Minimization of dopant-induced random potential fluctuations

in sawicoth doping superiattices

E. F. Schupertand T. D. Harris
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

J. E. Cunningham
AT&T Bell Laboratories, Holmdel, New Jersey 07733

(Received 30 August 1988; accepted for publication 19 September 1988)

Potential fluctuations due to random dopant distribution are estimated in a doping superlattice
for different doping profiles. It is shown that statistical potential fluctuations are minimized by
employing a doping profile consisting of a train of § functions, which result in sawtooth-shaped
band edges. Clearly resolved quantum-confined optical absorption and luminescence
transitions are observed in this improved doping superlattice structure. The sawtooth
superlattice provides the basis for a novel GaAs technology which is suited to operate in the
minimum dispersion region of silica fibers at a wavelength of A = 1.3 um.

Doping superlattices were proposed nearty 20 years

ago' and consist of alternating n- and p-type doped layers of
an epitaxially grown semiconductor. The periodic potential
modulation in doping superlattices, which is due to alternat-
ing donor and accepior charges, is the key feature of doping
superlattices and gives rise to a number of intriguing phe-
nomena.” The band diagram of the originally proposed
structure’ is shown in Fig. 1 (top) and consists of homogen-
eously doped layers. A sawtooth-shaped band diagram is
shtained if the thickness of the doped layer decreases, such
that the dopants are localized on a length scale of the lattice
constant.™* The szwtooth stracture® has been used for sever-
al novel device concepts such as stimulated light-emitting
diodes® or photonic switches.”

In this letter we investigate statistical potential fluctu-
ations in doping superlattices. We show that potential fluc-
tuations are minimized in the sawiooth structure. Gur theo-
retical  conclusions are supported by experimental
absorption and emission experiments, which reveal quan-
tum-confined optical transitions for the first time, We pro-
pose the sawtooth structure as the basis of a new GaAs tech-
nology, which is expected to operate in the minimum
dispersion region of optical silica fibers at 4 == 1.3 um.

The band diagram of the sawiooth superlattice struc-
ture is shown in Fig. 2. Electrons and holes occupy quan-
tized eigenstates of energy E ¢ and £, respectively. Radia-
tive recombination of energy #iw occurs in the undoped
regions between the dopant {ayers. As shown in Fig. 2, the
Iocations of most radiative recombination processes are the
tails of the wave functions beyond the classical turning
points (i.e., 2" >z, and z° < 2, ).

We now calculate the average potential fluctuation in-
duced by random dopant distribution in the doped layer.
The thickness of the doped layer, z,, is used as a free param-
eter. The total amount of dopants (per unit area) NP, is
kept constant, that is,

ap
N 4D =
where IV, , are the three-dimensional acceptor and donor
concentrations. This assumption provides the same {maxi-

mum) electric field in the homogeneously doped and the &-
doped superlattice.

s.pZg = constant, (1}
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Figure 3 illustrates the configuration which is used as a
basis for the caiculation. Radiative recombination cccurs in
the plane z = z,/4 between the two sheets of donors and
acceptors. We will now calculate the porential fluctuation at
the location of recombination (z = z,/4) caused by randomly
distributed dopants at z=0. Again, the thickness of the
doped iayer, z,, is used as a free parameter. The volume
element d¥, (shown in Fig. 3) contains

N=NpdV, = (N3 /2,)dV, (23
dopant atoms. The number of impurities within this volume
clement is assumed to fluctuate according to Poisson statis-
tics; the standard deviation is then given by N . The charge
Mfuctuation causes a potential fluctuation at (z,7) = (G,0)
which can be calculated by means of electrostatic principles.
For simplicity, we employ unscreened Coulomb potentials
and obtair for the mean potential fluctuation:

Ty = (3/476)‘/_(5]—@/25,—)31‘?1&%(?2 +22) 2, {3}

where e is the elementary charge, dr rdé dz is the unit vol-
ume shown in Fig. 3, and € is the permittivity of the semicon-

FIG. 1. Schematic energy-band diagram of homogencously doped superlat-
tice (top) and of a superlattice with very thin doped layers (bottom). Para-
bolic (top) and V-shaped (bottom) potential wells result from the two dop-
ing configurations.
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FIG. 2. Schematic illustration of the radiative recombination in a sawtooth
superlattice. Recombination oceurs predominantly beyond the classical
turning points (i.e., z> z% and z <2,) in the undoped region between the
donor and acceptor sheets. Recombination oceurs between electron eigen-
state energies (£ ) and hole eigenstate energies (E # ) with energy #w; this
energy is smaller than the gap energy of the host semiconductor (£, ).

ductor. We further assume that all potential fluctuations are
screened out for radii > 7, with 7, >z, /4. The total potential
can then be obtained by integration over the entire doped
layer:
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We will now try to minimize the potential Suctuations
of the doping superlattice to obtain the optimum dopant dis-
tribution in the superlattice. We use

(4)

DOPED REGION RADIATIVE
T RECOMBINATION
REGION
i
1
i
|
i
|
A e

¥

Lii—«—zv/f}u*’i—v—»z
0 L- 2p/4
24

FIG. 3. Schematic illustration of the configuration used to calculate poten-
tial fluctuations at (z,r) = (z,/4,0} caused by dopaut density fluctuations
in the doped region. Charge fluctuations at radii #> 7, are assumed to be
screened out.
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Minimum potential fluctuations are obtained according to
Eq. (5) (80}/3z, = 0) if the thickness of the doped layer
approaches zero, that is, z, — 0. The doping profile can then
be represented by the Dirac—delta function, The magnitude
of the potential fluctuation is then given by
) /2
lm o, = [ZerZD (—-f-«-) (I —In i”—»)} .
P ] 4ore 4r

s

&)

(6)

We have recently shown, that dopants can be indeed con-
fined in GaAs with insignificant diffusion of dopants along
the growth axis.* Thus, improved optical characteristics are
expected for the sawtooth structure as compared to the con-
ventional, homogeneously doped superlattice.

The epitaxial GaAs superlattices are grown by gas-
source molecular beam epitaxy on a {100) oriented semi-
insulating substrate at a substrate temperature of approxi-
mately 550°C. The nominal doping concentration is
NP = NPNP=125x10" em~? and the period is z,
=150 A with 10 periods. Absorption measurements are
performed on polished, 0.25 cm® samples. A dual-beam Per-
kin-Elmer mode! 330 specirophotometer and a variable-
temperature coid-finger cryostat are used. Low-temperature
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FIG. 4. Low-temperature absorption spectrum of a sawtooih superlattice.
Quantum-confined optical transitions at energies below the band gap are
identified. Theoretical transition energies are included (arrows).
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ohotoluminescence measurements are performed at 2 K us-
ingthe 488 nm lineofan Ar * ion laser and the 647 nm line of
a2 Kr ' ion laser for excitation. Luminescence is detected
with a Ge pin detector cooled to 77 K and amplified in a
phase-sensitive amplifier.

Results of absorption measurements on GaAs sawtooth
superlattices measured at 1" = 6 K are shown in Fig. 4. The
gap energy of the undoped GaAs substrate corresponds to a
wavelength of 4 = 820 nm and is shown by a double arrow.
The substrate absorbs light at energies slightly below the
fundamental gap; this absorption of bulk material is known
as the Urbach tail. We determined the corresponding Ur-
bach-tail energy to be £, = & meV for undoped GaAs. A
typical absorption spectrum of a GaAs substrate is shown as
a dashed curve in Fig, 4.

The absorption specirum shown in Fig. 4 shows strong
absorption below the fundamental gap of GaAs in a range of
400 meV below the band gap of the GaAs host lattice. The
most striking aspect of the absorption spectrum are four dis-
tinct features: an absorption maximum (peak) at A = 109¢
nm and three shoulders at wavelength of 4 = 1000, 920, and
865 nm. We attribute the structure to transitions between
guantum-confined states in the valence and conduction
band. Such guantum-confined interband transitions have
not been observed since the original proposal of doping su-
perlattices.

We now compare the experimental absorption data to
theoretical transition energies. The calculation using Airy
function is described in Ref. 8. The arrows shown in Fig. 2
are calculated emergies of quantum-confined transitions.
The lowest electron (n = §) to lowest heavy hole (n = 0)
transition is referred to as Je—04f transition. Very good
agreement between calculated quantum-confined transition
energies and experimental ones is observed over a wide range
of energies. For the calculation 2 period of z, = 142 Aanda
doping concentration of N”" = 1.3 X 10" cm ~ 2 are used to
obtain a best agreement between theory and experiment.

The low-temperature photoluminescence spectrum of
the sawtooth superlattice is shown in Fig. 5. Three clearly
resolved photoluminescence peaks are observed at 4 =0.98,
1.02, and 1.0% um. Again, we attribute the clearly resolved
luminescence pezks to transitions between guantum-con-
fined conduction- and valence-band states. Theoretical tran-
sition energies are included as well.

Our absorption and photoluminescence measurements
clearly show that the sawiooth structure represents an ideqg!
doping superlattice structure due to (i) minimization of un-
desired potential variations, (ii) large potential modulation,
and (iii) small superlattice pericd. Our improved structurs
provides the basis of a new GaAs technology that is expected
to operate at the dispersion minimum of silica fiber at
A=13um’

in conclusion, we have shown that dopant-induced ran-
dom potential fluctuations are minimized if the doping pro-
file consists of a d-function train of n- and p-type dopants.
Together with the feasibility of high superlattice potential
modulation, and small periods (z, =150 A), the sawtooth
superlattice represents an optimized doping superiattice
structure. Experimental evidence for the improvement is
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FIG. 5. Low-temperature photoluminescence spectrum of a sawtooth su-
periattice. Clearly resolved, guantum-confined transitions arc identified by
comparing them with calculated transition energies.

provided by means of low-temperature absorption and pho-
toluminescence measurements. Clearly resolved quantum-
confined transitions are observed in absorption and emission
for the first time. The sawtooth superlattice structure pro-
vides the basis for a novel GaAs technology which is suited
to operate in the minimum dispersion region of silica fibers
at a wavelength of A = 1.3 pm.
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